Presynaptic control of subunit composition of NMDA receptors mediating synaptic plasticity.
نویسندگان
چکیده
Subunit composition of subsynaptic transmitter receptors is controlled presynaptically in the developing neuromuscular junction. To investigate presynaptic regulation of NMDA receptor subunit composition in the CNS, we co-cultured different types of hippocampal explants with dissociated target neurons. Postsynaptic NMDA receptors were studied using whole-cell patch-clamp recordings. After 1 week in culture with innervation by dentate gyrus (dg) explants, the kinetic and pharmacological properties of postsynaptic NMDA receptors indicated the expression of NMDA receptor subtypes containing NR2B subunits (NR1/NR2A/NR2B or NR1/NR2B or both). The properties of NMDA receptors in noninnervated neurons were similar to those of neurons innervated by dg explants. In contrast, after innervation by explants from the cornu ammonis (CA) region, we found an additional NMDA receptor subtype with properties consistent with the subunit composition NR1/NR2A. These findings indicate that presynaptic signals determine NMDA receptor subunit composition. After prolonged cultivation (11-12 d) the properties of synaptic NMDA receptors in the majority of dg-innervated neurons also indicated the expression of NR1/NR2A receptors. This suggests a delayed developmental maturation of NMDA receptors in dg-innervated neurons. Long-term plasticity of central glutamatergic synapses is critically influenced by the subunit composition of NMDA receptors, and thus presynaptic control of NMDA receptor subunit composition might regulate synaptic plasticity.
منابع مشابه
Pre and Post Synaptic NMDA Effects Targeting Purkinje Cells in the Mouse Cerebellar Cortex
N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not ...
متن کاملPresynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule.
The detailed characterization of synaptic plasticity has led to the replacement of simple Hebbian rules by more complex rules depending on the order of presynaptic and postsynaptic action potentials. Here, we describe a mechanism endowing a plasticity rule with additional computational complexity--a dependence on the pattern of presynaptic action potentials. The classical Hebbian rule is based ...
متن کاملGluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.
NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular...
متن کاملA biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors.
In many regions of the brain, including the mammalian cortex, the magnitude and direction of activity-dependent changes in synaptic strength depend on the frequency of presynaptic stimulation (synaptic plasticity), as well as the history of activity at those synapses (metaplasticity). We present a model of a molecular mechanism of bidirectional synaptic plasticity based on the observation that ...
متن کاملSynaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.
N-methyl-(D)-aspartate (NMDA) receptors are heteromultimeric ion channels that contain an essential GluN1 subunit and two or more GluN2 (GluN2A-GluN2D) subunits. The biophysical properties and physiological roles of synaptic NMDA receptors are dependent on their subunit composition. In the basolateral amygdala (BLA), it has been suggested that the plasticity that underlies fear learning require...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 8 شماره
صفحات -
تاریخ انتشار 1997